16 research outputs found

    Sustainability, epistemology, ecocentric business and marketing strategy:ideology, reality and vision

    Get PDF
    This conceptual article examines the relationship between marketing and sustainability through the dual lenses of anthropocentric and ecocentric epistemology. Using the current anthropocentric epistemology and its associated dominant social paradigm, corporate ecological sustainability in commercial practice and business school research and teaching is difficult to achieve. However, adopting an ecocentric epistemology enables the development of an alternative business and marketing approach that places equal importance on nature, the planet, and ecological sustainability as the source of human and other species' well-being, as well as the source of all products and services. This article examines ecocentric, transformational business, and marketing strategies epistemologically, conceptually and practically and thereby proposes six ecocentric, transformational, strategic marketing universal premises as part of a vision of and solution to current global un-sustainability. Finally, this article outlines several opportunities for management practice and further research

    Accurate path integration in continuous attractor network models of grid cells

    Get PDF
    Grid cells in the rat entorhinal cortex display strikingly regular firing responses to the animal's position in 2-D space and have been hypothesized to form the neural substrate for dead-reckoning. However, errors accumulate rapidly when velocity inputs are integrated in existing models of grid cell activity. To produce grid-cell-like responses, these models would require frequent resets triggered by external sensory cues. Such inadequacies, shared by various models, cast doubt on the dead-reckoning potential of the grid cell system. Here we focus on the question of accurate path integration, specifically in continuous attractor models of grid cell activity. We show, in contrast to previous models, that continuous attractor models can generate regular triangular grid responses, based on inputs that encode only the rat's velocity and heading direction. We consider the role of the network boundary in the integration performance of the network and show that both periodic and aperiodic networks are capable of accurate path integration, despite important differences in their attractor manifolds. We quantify the rate at which errors in the velocity integration accumulate as a function of network size and intrinsic noise within the network. With a plausible range of parameters and the inclusion of spike variability, our model networks can accurately integrate velocity inputs over a maximum of ~10–100 meters and ~1–10 minutes. These findings form a proof-of-concept that continuous attractor dynamics may underlie velocity integration in the dorsolateral medial entorhinal cortex. The simulations also generate pertinent upper bounds on the accuracy of integration that may be achieved by continuous attractor dynamics in the grid cell network. We suggest experiments to test the continuous attractor model and differentiate it from models in which single cells establish their responses independently of each other

    Path integration and the neural basis of the 'cognitive map'

    No full text

    Sustainability in marketing: a systematic review unifying 20 years of theoretical and substantive contributions (1997–2016)

    No full text
    corecore